
Contents
1 Introduction 1. . .
2 Definition and Outline 2. . .
2.1 The Role of Object-Orientation . . . 2. . . .

2.2 The Process . 2. . . .

2.3 The Analysis Model 3. . . .

2.4 The Design Model 4. . . .

3 The Models 4. . .
3.1 Views . 4. . . .

3.2 Analysis Model 5. . . .

3.3 Design Model 5. . . .

4 The Process 5. . .
4.1 Structure . 6. . . .

4.2 Concepts for Design 6. . . .

4.3 Performance Tuning 8. . . .

4.4 Staffing . 9. . . .

4.5 Psychological Aspects 9. . . .

5 Current Problem Areas 10. .
5.1 Legacy Systems 10. . .

5.2 User Interfaces 10. . .

5.3 Database Systems 11. . .

6 Modern Concepts 12. .
6.1 Reuse . 12. . .

6.2 CASE Support 14. . .

6.3 Prototyping . 14. . .

6.4 Formal Methods 15. . .

7 Conclusion 16. .
8 Bibliography 16. .

1 Introduction

It is now nearly six years ago since I first got into
contact with some kind of object-oriented ap-
proach to software engineering. How hard it is
to master the object-oriented paradigm was one
of the first things I learned, because my first lec-
turer behaved quite clumsy. His lessons were
based on Betrand Meyer's "Object-oriented Soft-
ware Construction" [Meye88]. Because this book
lacks of a notation - Meyer recommends Eiffel
with its pre- and postconditions as a specifica-
tion method - the lecturer chose Petri-Nets to
visualise every aspect of an object-oriented sys-
tem. How awkward these "method" was for
practical application could be seen during our
one-semester lasting project. Because of his miss-
ing experience our tutor was more a burden than
a help. Now, what has this story to do with this
essay? It is supposed to back up my opinion,
that it is not easy and definitely not trivial to use
an object-oriented method. It is even harder if
the method is not "pure" object-oriented, because
it has to use for instance a non-object-oriented
visualisation system or implementation environ-
ment. Despite the fact that problems start in the
analysis - because not everything is an object - it
seems to me that the main difficulties lie in the
transition from the analysis to the design model1;
mainly because the latter one has to reflect the
specifics of the implementation environment. If
this is not object-oriented, the developer has to
cope with a semantic gap. I gained this experi-
ence during my last dissertation ([Merk95]) that
dealt with the development of a relational data-
base using the OMT method by James Rum-
baugh et al ([Rumb93]).

1 "It has been learned over and over, that the translation from analysis to design is the most difficult step in
producing quality systems." [Vayd95], p.445

Independent Study Dissertation Module - CP4431 - June 1996

Coping with the problems during transition from Analysis to Design
in Object-Oriented Methodologies

Olaf Merkert
MSc Student, University of Wolverhampton

O.Merkert@wlv.ac.uk

Abstract: This paper deals with the problems that arise during the transisition from analysis to design. All
impact factors like a supportive structure and contents of the analyis model or requirements of the following
implementation environment are discussed. Additionally the transition process and the influences of current
software engineering concepts and conditions are treated. Problem areas were identified through practical re-
ports while solutions are taken both from practical experience papers and theoretical reports. The reader should
be familiar with basic object-oriented concepts.

- 1 -

The object-oriented paradigm started with oo
programming in the 60s. During the 80s its con-
cepts were put into software engineering and
since the beginning of the 90s complete methods
are available, which describe the whole develop-
ment process. These methods often claim, that
they are also applicable in a non-object-oriented
environment. In this essay current reports are
evaluated that describe which shortcomings dur-
ing the transition from analysis to design were
discovered in practise.

Possible solutions are taken from these reports
and from other papers that seemed to compre-
hend interesting answers for the mentioned
problems. Because we all know about the gap
between theory and practice I mainly try to refer
to practice reports more than to theoretical
papers.

The first section of this paper tries to give a brief
background and a short summary of theoretical
concepts. The number of influences on the tran-
sition process is very extensive and therefore
both macro and micro process elements are men-
tioned2. The next section contains a discussion of
recommendations for the analysis model which
is followed by the description of design model
aspects. Subsequently the transition process
from analysis to design is treated. While the both
preceding chapters mainly dealt with static as-
pects this section contains primarily dynamic
elements. Current problem areas in software de-
velopment and their impact on the transition in
object-oriented methods are handled in the
fourth chapter, that is followed by an evaluation
of popular concepts to cope with the enumerated
problems.

The following abbreviations are used in the pa-
per: oo = object-oriented, OT = object technol-
ogy, OOA = oo analysis, OOD = oo design,
OOP = oo programming, DBMS = database
management system, ODBMS = oo DBMS, PT =
prototype

2 Definition and Outline

Before the practical aspects are discussed a small
amount of theory is necessary to understand
what this essay is all about. Instead of providing
a complete overview of the proposals of current

oo methods I try to summarise important gen-
eral concepts in the direction of the process,
which has to be performed to get from analysis
to design. I try to mention concepts that seem to
be important but often overlooked. Furthermore
the characteristics of analysis and design models
that are relevant for the transition are specified.

2.1 The Role of Object-Orientation

"The increasing number of books and articles
published on topics related to object technology
(OT) lends credence to the fact that this disci-
pline has come of age." [Panc95], p.33

Over the last three years the articles in computer
magazines changed. The number of articles
about the introduction of object-oriented con-
cepts decreased in favour of reports about their
practical application. This report - exceptionally
- does not focus on the loads of advantages that
were gained through its application instead of
the usage of a classical method. I would like to
describe the problems that arise and their solu-
tions that were often not obvious and required
an amount of time. According to the theme of
this essay it is mainly about the transition from
analysis to design, which is described in the proc-
ess section. Which characteristics are to be imple-
mented in the analysis model to support the
transition to design and hints about how the re-
sulting design model should look like are col-
lected in the models section. Like the analysis and
the design process both sections overlap in some
parts.

2.2 The Process

In figure 2.1 the part of the software lifecycle
that is relevant for this paper is shown. The
process of the transition from an analysis to a
design model is usually called design. The analy-
sis model has to contain certain elements to sup-
port the transition. Moreover the design model
has to incorporate concepts to establish the next
step to implementation.

2 Booch distinguishes in [Booc94] between the micro process that comprehends the daily development ac-
tivities of a single developer or a small team and the macro process which is the controlling framework for
the micro process. The terms are commonly known and their usage does not imply that this paper deals
only with the Booch Method.

- 2 -

Analysis
Modell

Design
Modell

Implementation
Modell

Design

Implementation

Fig 2.1 - Part of Software Lifecycle

The human creativity is an important point dur-
ing both analysis and the transition to design:

"An interactive process for constructing mod-
els and implementing them [...] must be a
framework that employs human creativity at
many points." [Rumb96], p.14

Nevertheless practise has shown that "a well de-
fined process is essential" [FaTs95]. Booch
([Booc94]) for instance is therefore describing a
macro process for determined high level steps
and a micro process for the every day develop-
ment activities, which are performed with a
higher degree of freedom. "Many users tailor the
process to their own organisations anyway"
[Rumb96]. Hence often the advantages of vari-
ous oo process descriptions are combined. In the
latest OMT release Rumbaugh proposes the us-
age of Use Cases as a first step. Booch describes
the step from analysis to design as the invention
of artefacts that provide the system's behaviour
that was captured in the analysis model. Fur-
thermore he stresses the importance of traceabil-
ity that allows to prove that every required
function is implemented. Another sometimes ne-
glected aspect is the idea of reuse that can be re-
alised with OT very well, because of its
data&function encapsulation. Reuse concepts
have to be implemented in the transition proc-
ess. One of the most important questions that are
discussed in common theories is: When to start
the transition? Booch ([Booc94]) recommends to
begin the design process not too late to avoid
premature design, but early enough to avoid
analysis paralysis3. He stresses that the aim of a

complete and perfect analysis model is not
reachable. This is also emphasised by Odell
([Odel96]) who says that an exhaustive approach
is impractical and often impossible. Generally
spoken has there be first an identification process
during analysis that is the basis for the definition
process during design ([PeCu95]).

2.3 The Analysis Model

The analysis model is the basis for the transition
to a design model and therefore must have cer-
tain qualities. How they can be achieved and
where the major problem areas are in practise
will be described in the following chapters. In
this section the basic theoretical ideas are sum-
marised for clarity reasons.

"absence of domain knowledge 'reduces the
task to manipulations in a formal abstract sys-
tem' and results in poor design choices"
[Panc95], p.38

The citation above, which was taken from a
practitioner, shows the major intention of per-
forming an analysis phase. The developer has to
"model the world by identifying classes and objects"
([Booc94], p.252) on a high level to develop an
understanding of the system and its environ-
ment. Therefore methods like Jacobson's
([Jaco92]) propose the construction of an analysis
model just for that reason and not as a basis for a
design model as it is common in other oo meth-
ods. However key abstractions - objects and
their relationships - in the problem domain have
to be captured. Beside the static, dynamic as-
pects should have to be incorporated in a con-
ceptual model. According to [Rumb91] it should
be an "external view of the system" that is "under-
standable for the client" because only then it can be
a "useful basis for eliciting the true requirements".
Odell stresses the importance of representing the
right objects: "[...]the analysis goes beyond just look-
ing at information to include anything or anybody of
interest to the business" [Odel96]. If the model is
too packed it will restrain the design process.
Moreover it should scope and prioritise system
design areas as a basis for iterative development.
Generally the analysis model should contain
what must be done without restrictions to the
implementation.

3 This common known term describes the state of an analysis process that does not make any - or just a
small - progress because of the claim to constrcut a perfect model of the system.

- 3 -

2.4 The Design Model

How the system will work using the identified
objects from the analysis model has to be de-
fined during the design. The basis for the follow-
ing implementation has to be created. According
to Booch there are two primary products of the
design: a description of the architecture and de-
scriptions of common tactical policies
([Booc94],p.255). The latter comprehend com-
mon procedures for: error detection and han-
dling, memory management and data storage.
He stresses the importance of a distinction be-
tween physical and logical structure. Rumbaugh
accentuates that the design model has to be "rea-
sonable efficient and practical to encode"
([Rumb91],p.260). Furthermore he states that
some parts of the analysis model can already be
transferred into the design specification without
further modification. Because of its higher level
of detail the design model is a complementary
perspective of the system. It contains a mapping
of conceptual models to implementation models
and incorporates technical design decisions.
Moreover usability, performance and resource
requirements are important considerations dur-
ing design.

The output of the transition process from analy-
sis to design - the design model - is the input for
the implementation phase. For that reason the
design model has to consider characteristics of
the implementation environment ([Rumb91]).
The aspects discussed in this paper are not lan-
guage specific but rather general notions.

3 The Models

The aspects that should be included in the analy-
sis and the design model are the contents of this
section. The things that are important and which
ones are not is evaluated with reference to prac-
tical experience.

The advances made in both models are an im-
portant progress indicator ([Mala95]) and hence
it is necessary to understand concepts that have
to be incorporated. Additionally the authors of
this paper recommend to use both models to "fa-
cilitate evaluation of design alternatives and commu-
nication within development teams". Therefore
narrative text should be added to enhance com-
munication. This is especially recommended by
[Caro94] for the user interface considerations.
Simplicity of the models is advised in [Mala95]
because otherwise the rich notations will be

"overkill for co-ordinating development across the dis-
ciplines". A possible solution is the comprehen-
sion of models from different methods.
Furthermore modifications to the notation or the
invention of a new one can be helpful. How and
which methods are adapted is determined by the
project requirements ([Mala95], p.40).

In [Kaas95] interesting theoretical aspects for the
usage of the abstraction concepts are discussed.
The author stresses the importance to separate
the abstraction in the analysis of a problem do-
main from the usage of abstraction during the
design of an information system. He presents ex-
tensions for both oo and structured methods that
are not further discussed here for space reasons
and their missing practical relation.

3.1 Views

The lack of "larger scale bird's eyeviews of a system"
([Vayd95]) is often mentioned as a reason for
problems in both models. It is not only that the
domain expert has to navigate through the
analysis documentation; but also that important
design decisions can be made only by a devel-
oper if high level views are available to consider
larger system parts. This "overall view of the sys-
tem" is also demanded in [Mala95]. They stress
the importance of the population of a change in
one view to another which can easy be achieved
with a CASE tool. Each view should highlight a
particular aspects of the model.

Notions that are not mentioned in both sources
but that seem to be useful for the problems of
larger views are the High Level concepts in OSA
([Embl92]) that provide abstract views for static
as well as dynamic modelling. Another concept
described in [AlFr96] is the layering of object
models based on use cases. I consider their ap-
proach to be practical relevant because the
authors are involved in the development of Se-
lect CASE tool. The layering is done by using the
structure shown in figure 2. Each lower layer
acts as server to upper layers.

During the use case modelling the distinction be-
tween business use cases and system use cases is
supported through the model because they are
put into the corresponding layers. With the use
case approach the traceability of required func-
tionality is supported in different layers.

- 4 -

User Interface Object Model

Local Object Model

Enterprise Object Model

Storage Object Model

Fig. 2 - Model Layers (Source: [FrAl96])

3.2 Analysis Model

That the missing distinction between analysis
and design is a big problem could be seen in
larger projects as well as in smaller ones
([Vayd95]). If the constructed analysis model
missed the aim to "describe the system at a high
level" the following design process will perhaps
be easier but the developed system does not fit
the business needs. The domain expert and users
can only understand and verify the model if it
abandons implementation specific aspects. As a
probable result errors in the basis for the transi-
tion may occur, because gaps and ambiguities in
the requirements document are not uncovered
([Mala95]).

A missing relation between the modelling views
for static and dynamic aspects results in a lack of
clarity ([Vayd95]). If the designer is not able to
relate the various analysis models he will not be
able to develop an appropriate design model. On
the other hand the misuse of existing modelling
concepts during analysis can lead to a proce-
dural system and other problems during the de-
sign. Beside too much coupling between classes
instead of cohesion, inheritance hierarchies that
are too deep will cause problems. They are often
caused by applying more static than dynamic
modelling. CASE tools are very useful to sup-
port the interrelation of the models for different
aspects of the system. Furthermore they enable
the user to work parallel on the diagrams to
avoid biased modelling.

The authors of [Berg95] stress the importance of
a "Requirements Mutation Analysis" to caption ex-
pected changes additionally to the functions the
system should perform.

3.3 Design Model

"But if you look at mature object-oriented de-
signs, they have lots of objects in there that
don't reflect anything in the original domain
model...They reify abstract concepts that you
didn't think of initially when you were model-
ling your system." John Vlissides in
[Panc95], p.42

The citation above highlights one of the most
common errors. Even if the analysis model is a
representation of the real world, the design can
be heaped with abstract concepts. As a result the
tie that has to be maintained between design de-
cisions and specific entries from the require-
ments model is loosened ([Berg95]). The
analysed flexibility requirements also have to be
considered in the design model because it does
not come automatically with the use of an oo
method. One of the ways to achieve this is to in-
tegrate architectural issues in the model
([Vayd95]). They should address both the logical
application structure which covers the decomposi-
tion of a system into subsystems and clusters
and the physical system architecture that contains
the process allocation to processors, physical
DBMS models, communication topology and
protocols. Furthermore a performance modelling
is essential that is only feasible if knowledge
about Client/Server and DBMS issues is
available.

Additionally the developer has to use advanced
features of the programming language in the de-
sign model ([Vayd95]). A language that supports
for instance run-time type identification enables
him to use container classes more easily while
exception handling leads to more robust pro-
grams. A developer has to be trained to use the
advanced features of an implementation envi-
ronment to produce better designs. He also has
to know how they are translated into programs.

4 The Process

"The means used to transform analysis models
to design models is the 'black hole' in most ex-
tant methodologies." [Vayd95], p.444

In spite of the fact that the common oo methods
give some hints to perform the transition current
practise reports proved additional aspects to be
important. The process structure showed up to
be significant as well as the application of certain
design concepts and early performance

- 5 -

considerations. The staffing of a project and psy-
chological considerations have to be taken into
account by the management, that has to back up
the design activities of the single developer.

4.1 Structure

The "analysis paralysis" problem, that was men-
tioned in the first chapter, often occurred in real
world projects ([Vayd95]) especially when ana-
lysts applied OOA for the first time. Vayda
stresses the option of "overlapped, parallel and it-
erative development life cycles" that allows the si-
multaneous execution of analysis, design,
implementation and testing. He promotes a
"fountain model" that makes the results of later
lifecycle stages available for the construction of
the analysis and the design models. Nevertheless
the application of a distinct analysis phase is im-
portant before the transition to design starts.

For oo software development an iterative proc-
ess structure has been found to be very useful.
One of the many sources for this statement is
[Mala95]. The authors stress the importance of
"planning development cycles based on OOA/D mod-
els". This has to be done in an early stage to-
gether with technical issues to avoid "a major
software restructuring" in a late phase. During
analysis increments should be planned accord-
ing to functionality. They have to be constituted
during design. Incremental development is quite
supportive for risk management because early
warnings are given. The authors of [PeCu95] de-
scribe the overall approach to object-oriented
analysis and design also as "highly iterative".
Hence further change is implicit in the design of
object-oriented systems.

4.2 Concepts for Design

The following concepts are listed in [Vayd95] as
hints to support the transition from analysis to
design:

chose containers for each logical relation in
the analysis model for performance and
space issues

persistent classes have to be supported by a
physical database schema - especially update
procedures have to be addressed

every class in the analysis model has to be
mapped - with its whole life-cycle - on a
process model (architecture)

use a GUI framework, which supports
model/view/controller4 concept

state machines should be transferred auto-
matically via tools into code (table driven ap-
proach or tools like lex or yacc)

interface definition with CORBA IDL5, be-
cause it is implementation independent

To support the later step to implementation
Vayda recommends the production of precise
specifications through pre- and postconditions
that have to be guaranteed. Also a set of invari-
ants for each class, that is true for each instance
all the time, is important. These concepts can be
gathered under the title safe design because
they ensure the construction of correct and ro-
bust systems.

4.2.1 Guidelines

According to [Vayd95] design guidelines should
be used that contain "heuristics for the major soft-
ware issues". These are coupling, cohesion, modu-
larisation, inheritance, aggregation, association,
interface design, default values, canonical
classes, reference counting, recompilation avoid-
ance, communication styles and database design.
Furthermore quality standards should be ad-
dressed ([Faya96]). Guidelines are necessary to
guarantee uniformity, maintainability and ex-
tendibility of the constructed software product.
Also in [Mala95] guidelines for the design proc-
ess are described as necessary. They should be
constructed from external information and ex-
tended from the experience of internal projects.
These guidelines have to be set up and their ap-
plication has to be guaranteed. The latter one can
be done through a mentor and/or reviews. Help
to determine when a model is complete enough
to continue to the next activity should be in-
cluded as well as evaluation criteria and con-
cepts to support reusability ([Mala95]). An
example for missing guidelines is described in
[Berg95]. The absence of a directive for an inter-
nal consistency check caused the destruction of a
4000 byte region by an array overrun.

4 The Model-View-Controller pattern is very popular in the Smalltalk environment to uncouple the internal
representation of an object from its external presentation.

5 The Object Management Group defined CORBA as a standard for objects in a distributed environment.
With IDL - the interface definition language - objects in heterogenous implementation environments can
interact.

- 6 -

4.2.2 Mentors

"This project confirmed the commonly ac-
cepted importance of training and mentoring."
[Berg95], p.59

The participation of an experienced consultant is
mentioned in [Vayd95] as a solution to overcome
problems especially during the construction of
the analysis model. But according to [Mala95]
engineers that have oo expertise are not only
useful for this phase of the software lifecycle. To
support the design process these mentors should
be seed into teams. Furthermore "management has
to provide sustained support for mentoring through
planning and rewarding time required" ([Mala95]).
This was successfully done in the project de-
scribed in [Berg95]. To refine the use of the oo
technique is an additional function of an oo guru
involved in the analysis and design process
([Faya96]). He has to clarify and extend the
methodology and update current organisational
standards. Because of the impact of his decisions
the selection of an appropriate qualified person
has a high priority.

In weekly meetings the team can get feedback
from the mentor. Various experts - which apply
different inspection methods - are needed to re-
view the design from different perspectives.
These are: architecture, database, communica-
tion, algorithms and GUI ([Vayd95]).

4.2.3 Reviews

"Without formal interim reviews, the final
product will resemble a United Nations meet-
ing - several seemingly unrelated individual
elements trying to work together." [Faya96],
p.120

Reviews with a critical inspection of design and
implementation are recommended by [Berg95]
to exploit the oo incremental approach. They
make sure that extendibility, inheritance on the
right place and design patterns were considered
in the design. Standardised concepts are often
misunderstood or not used on purpose. To
avoid this problem, regular meetings of the de-
velopers have to be performed. Walkthrough or
peer review are advised in [Faya96] as review
techniques. Inspection checklists proved to be
useful in ensuring that "several independent review-
ers cover all bases". The reviews are the most cost-

effective technique to ensure software quality.
Especially the quality of documentation has to
be examined regularly. Another advantage of
reviews is the support for communication
amongst teams. When different teams work on
the various subsystems they have to exchange
experiences and discuss change requests for in-
terfaces ([Mala95]).

4.2.4 Change Management

The introduction of changes to the design model
from a certain point in time requires not only a
special procedure like "publish/subscribe" that is
mentioned in [Vayd95]; a version control that is
embedded in a configuration management tool is
also necessary. While code parts are usually rec-
ognised, design documents are often not appre-
ciated as configuration items. According to
([Fayaa96]) the following items that are typical in
common oo methods are relevant for a software
configuration management: requirements, class
diagrams, object-interaction diagrams, object
diagrams, object-hierarchy diagrams, process
diagrams, object/class design and test classes.
The proposed iterative development process
supports changeability but according to
[Vayd95], p.441: "allow changes only via a well de-
fined and controlled set of mechanisms". When reuse
is propagated as recommended in using OT the
change management becomes even more impor-
tant ([Vayd95]) because versioning has an im-
pact on more than one application.

4.2.5 Method Refinements

Because of the importance for communication
across teams, processes have to be introduced to
enhance it ([Mala95]). One of these is a walk-
through, that should lead to a "supplementary
documentation to explain the rationale behind the
model". Unresolved issues also have to be docu-
mented. The demanded understanding of every
subsystem and their interaction can be blocked
by missing documentation of aspects that
seemed to be obvious to the developers in the
team which introduced them.

Another change can be the reordering of devel-
opment steps. Instead of the production of a
static object model before the construction of an
operational one like prescribed in the Fusion6

method, the authors of [Mala95] report that it
showed up to be useful to do it the other way
round. They also applied the object model as a

6 The Fusion method was developed at Hewlett Packard by Coleman et al. It was published 1994 and be-
longs to the cathegory of second generation methods.

- 7 -

mechanism for conceptualising and document-
ing the system during design through updating
it during this phase. The enhancement made by
the incorporation of use cases to the require-
ments gathering is already recognised in current
method enhancements or even new methods like
the unified method ([BoRu95]). In HP projects
they were also used to "explore different patterns of
object interaction" ([Mala95]). They were repre-
sented by timeline diagrams that were used dur-
ing design in spite of the fact that Fusion does
not suggest that. Also Vayda ([Vayd95]) advises
the production, provision and prescription of
notations to overcome the mentioned shortages
in popular methods.

Not to neglect is the documentation of the tai-
lored process ([Faya96]). Any step that is re-
quired has to be documented precisely to
guarantee a "bi-directional traceability from require-
ments models to code" ([Faya96],p.118). To main-
tain the documents and to refine the process, a
process improvement group is recommended. A
simple rule is the following:

"The software process must be defined with
sufficient detail that any competent developer
outside the scope of the current project could
correctly answer the question: What's next?."
[Faya96], p.119

4.2.6 Change of Methods

The authors of [Losa94] try to compare oo meth-
ods through the application of Coad/Yourdon
([CoYo91]) during analysis and the use of Booch
([Booc94]) for design. Both methods were origi-
nally developed for the use in the analysis re-
spectively the design phase and hence have
advantages for these areas. To me this approach
is not very useful because the notations are too
different to allow an easy transition from analy-
sis to design. This is backed up by the experience
that is described in [Berg95]: one team inside a
project with many teams that used OMT applied
the Shlaer/Mellor method. This team had to
maintain a CASE tool on their own instead of
taking advantage from the central Tool Support
team and to organise its own training. As a re-
sult they missed an early deadline by three
months. The conclusion made be the authors is
that even if another design method is superior
for a subsystem, the application of a uniform
method in the whole project showed up to be
more useful in practise. Reasons for that are
communication problems during reviews and
integration difficulties when team members

were moved. As a result of applying Booch to
analysis and Coad/Yourdon to design the
authors of [BuAd95] report a decreasing scale-
ability, traceability and hence maintainability.

In [BrEv94] even the usage of a structured
method for analysis and the introduction of OT
in the design phase is recommended to get the
benefits of OOP within a mature development
process. Their argument - that was discovered in
smaller projects - is a clearer distinction between
analysis and design phase. Although this is a
recognised problem I think that giving up OOA
leads to the loss of more advantages than the
method mixture would bring. Especially the
"cradle to grave" character of the oo paradigm is
very important. After his first guided oo project
a developer should be able to distinguish be-
tween analysis and design without a method
break ([Vayd95]).

4.3 Performance Tuning

The extensive use of oo constructs like for in-
stance virtual functions has a high impact on the
performance of the final system ([Faya96]). Loss
in performance and an increased request for
memory are the side effect of the constructs that
support abstraction. Thus, the design decisions
have to be evaluated according to their influence
on the performance. A computer resource
budget that is based on the capacity of the target
machine in terms of their memory, CPU per-
formance and I/O bandwidth has to be estab-
lished to give a sense of direction during design
([Faya96]). Obviously every designer must un-
derstand the overhead associated with every oo
construct in terms of execution time and mem-
ory requirements. One strong influence on the
latter one is code bloat ([Berg95]). The strong
performance of the system described in [Berg95]
was caused by the performance engineering
presence from the beginning of the project. They
give the following design concepts to increase
the throughput of an oo system:

The assumptions that a method makes
should be moved to its caller. As this deci-
sion implies an increased performance but
leads to design that is not very general it has
to be documented very well.

Put code of the callers of a method into the
method to move context. A fatter method in-
terface instead of a very large amount of
method calls is recommended.

- 8 -

To avoid the overhead caused by the con-
struction of new objects reuse them. To
achieve this, object pools have to be imple-
mented in the design model. In these pools,
objects are not constructed and initialised
but rather their state is adjusted to prevent
data movement.

Templates increase code size in a large ex-
tent. Isolating some of the code in a nontem-
plate will reduce the executable size and
hence memory requirements of the system.

Virtual functions in abstract classes cause
overhead that can be avoided through mov-
ing the function definition down to its con-
crete derived class.

Multiple inheritance is acceptable at the con-
ceptual level but usually becomes less useful
at the implementation level. Thus the design
model should try to avoid this construct.

The important performance increase through
caches also has to be considered during de-
sign, because objects have to be assigned to
cache areas.

All in all an observation during the project de-
scribed in [Berg95] was that performance prob-
lems through the usage of OT were solved
through the ingenuity of the developers.

4.4 Staffing

The authors of [Mala95],p.37 advise a small team
for analysis that creates a high level architecture.
Practice has shown that small teams are most ef-
fective. After an appropriate definition of sub-
systems these can be developed by subsystem
teams. This expanding of staffing levels is fol-
lowing the "natural fan-out of work". Projects in
HP have shown that teams that were too large at
the project initiation left engineers "on the side-
lines, while a select group of key architects is given
responsibility". Beside unused resources the prob-
lem of lowered group morale appeared. The fol-
lowing phenomenon was observed in [Berg95]:
The use of OT leveraged developers at highest
intelligence levels but also empowered average
ones with class libraries and frameworks to do
activities they normally would not be able to
perform. Furthermore the authors mention that
it is hard for a developer who had gone through
an oo training to do a non- oo job such as port-
ing code. As a consequence management options
in distributing people will be restricted.

4.5 Psychological Aspects

"Good concepts and techniques do not have to
be forced on people who want to maximise ef-
fectiveness. If concepts and techniques are
truly good, developers will fight to be able to
use them." [Faya96], p.121

Not only in the first project that is solved with
an object-oriented method psychological aspects
have to be considered; also experience develop-
ers recognise these influences. OT offers good
features to cope with complexity and to allow a
natural structuring of large systems. Hence OT
can be used effectively especially larger projects.
This implies the incorporation of many develop-
ers in often more than one team. A result is that
not everyone is as motivated as the people de-
scribed in the citation above. Therefore the aris-
ing problems with these teams are not only
technical but also psychological because "political
issues poison the organisation's ability to work on in-
tegrated solutions" ([Vayd95], p.440). In [Berg95]
the resistance of developers who are experienced
in another paradigm is mentioned. They are not
enthusiastic about the advent of a new one.
Other engineers did well with the oo training
and asked for a faster movement to develop-
ment work. To make these teams work it is very
important to promote team spirit and to post the
skilful people as team leaders to support their
interest ([Berg95]).

In the companies where no defined development
process is established it is very hard to make in-
dependent workers to operate as team members
([Faya96]). They try to intensify the other mem-
ber's first impression that the oo process requires
"significantly more work for small benefit". The
authors of [Mala95] mention the friction in a
team caused by resistors to OOA/D methods.
One result is an undermining of communication.
Beside the mentioned technical disadvantages
the lack of standardisation has also a negative
psychological impact on the team members. If
alterations to a method are performed, the team
members tend to "lose discipline and rigor"
([Mala95]). This can be prevented by rigorous
documentation of the allowed changes.

4.5.1 Confidence

A way to establish acceptance in a team is de-
scribed in [Mala95],p.36. After three weeks train-
ing the developers felt too unsecure to achieve
good results. But "after the six week pilot the engi-
neers were confident that, with ongoing mentoring

- 9 -

from resident oo experts, periodic reviews with an
outside consultant, and good design and program-
ming guidelines, they were well prepared". A phase
without pressure to reach targets showed that
the introduced framework was usable. The re-
quired confidence of the developers was the re-
sult. Additionally the application of special
design aims has to be made popular amongst the
team members.

4.5.2 Rewards

A proposal to stimulate the utilisation of reuse in
a company trough a reward system is mentioned
in [Vayd95],p.448: "For each line of code that is re-
used, its developer gets paid a nickel and the reuser
gets a penny. The company where this approach was
used spent about $60K and saved $430K in the first
year."7 The reward system proposed in [Berg95]
is based on schedule and the defect performance
of the individual subsystems of different devel-
opers. The lines of code (LOC) measurement that
was used for the complete system was not an-
nounced to avoid drawbacks for reuse.

5 Current Problem Areas

The current software engineering world has
many problem areas. For the design process the
consideration of legacy systems and the con-
struction of user friendly software are very
important.

5.1 Legacy Systems

These days it is often not possible to develop
systems in the green field. Legacy systems have
to be implicated in the new program structure.
The following strategies are mentioned in
[Vayd95]: Incremental engineering, Database
Conversion and Wrapper Construction. All of
them often have to be considered during the
transition from analysis to design. Especially the
wrapper construction implies a design decision
that can lead to significant disadvantages. The
sometimes-recommended solution of one single
wrapper for the complete system leads to the
loss of maintainability, extendibility and clarity
([HoSc96]). The recommendation "recapture the
designs for legacy systems when they are to be long-
lived and updated" ([Mala95]) is therefore also a
reasonable first step if an incremental replace-
ment of the legacy system is planned. The next
phase is to build capsules according to the

business objects of the application domain.
These capsules use various interfaces of the leg-
acy system ([HoSc96]) and implement - if a
"dumping" of the old system is planned - gradu-
ally its functionally. Thus the demand to work
out and document at least the interfaces of the
legacy system ([Mala95]) seems to be highly
recommended.

5.2 User Interfaces

Two neglected aspects that have to be consid-
ered for the design of a software system are
friendly user interfaces and interface navigation
as a characteristic of large scale oo projects
([Vayd95]). That they are important for any size
of project is mentioned in [Caro94]. The transi-
tion has to be "constrained by the contexts of user
activity" that are identified during analysis be-
side the functional requirements. This allows an
identification of problem areas for further design
work. The usage scenarios have to be docu-
mented continually in the development process
to accumulate and develop the attained
knowledge.

A wider description for the enhancement of the
transition from analysis to design through the
application of environments for design is given by
Terry Winograd. He argues for their necessity
during a modern software development process
in [Wino95]. The main idea is the design of soft-
ware that fits the user's needs from a usability
point of view and I think that his ideas have to
be considered during the design process that is
based upon the analysis model. Firstly he men-
tions the "shift of perspective, away from what the
computer does, toward the experiences of the people
who use it". Beside the functional specifications,
the efficiency of usage has to be designed. There-
fore the software developer has to "move from a
constructor's-eye-view to a designer's-eye-view". Be-
side, the mechanisms the human situations have
to be focused. Design environments are needed
that support a "broader array of representations, in-
cluding different kinds of conceptual models, mock-
ups, scenarios, storyboards, and prototypes". Espe-
cially the latter ones are needed to support a
new way of system design. Instead of discussing
formal papers with the user, example systems
are used to demonstrate the realisation of ana-
lysed requirements. They also enable the devel-
oper to "try something out, see what it does, make
changes, and try again in a tightly coupled cycle".
They enhance the iterative cycles that are

7 That the simple reward principle is a quite bipartite concepts is discussed in [Merk96]. One section of this
paper is dealing with concepts to increase the motivation of developers during maintainance.

- 10 -

recommended for many object-oriented method-
ologies and support the rapid evaluation of de-
sign decisions.

5.3 Database Systems

Nearly every software system has to deal with
the problem of persistent data. That means a
way is needed to provide a mechanism for stor-
ing data and retrieving it at a later point in time.
This can be done with the help of a database
management system (DBMS). When an object-
oriented software engineering method for analy-
sis and design is used it seems to be reasonable
to store the objects in an object-oriented database
system. Because of the prejudice of immaturity
and a view other counter arguments existing re-
lational systems are preferred by many compa-
nies. This is the reality as it is described by
experience reports. Which impact the usage of
these systems has and what possible concepts
and solutions are available is summarised in this
chapter.

5.3.1 The Mixture of Paradigms

The oo view of the world is a paradigm while
the functional perspective is another one. Also
the relational model which is mainly based on
sets, their relation and manipulation can be con-
sidered to be a paradigm. Today the mixture of
procedural programming languages with
RDBMS is very common. Even if 4GL languages
support data manipulation through procedural
commands, software developers have to cope
with a semantic gap between the two implemen-
tation targets. In this paper the mixture on a
higher level of the software development proc-
ess is examined. According to [Grah93] this
process is only efficient when either a conven-
tional method or an object-oriented one is used
completely throughout the lifecycle. This opinion
is also backed up by the following citation about
the negative impact of hybrid programming lan-
guages ([Panc95],p.38): "Generally, the panellists
thought that hybrids encourage bad habits. By ob-
scuring the object structure, such languages can also
prolong the development process."

5.3.2 RDBMS Experiences

"It would be easier to use an object-oriented
database that can utilise this design to store
and access objects instead of a relational
database." [DeFu95], p.120

The above citation states the impact that the use
of an RDBMS has on the design process. With an
ODBMS the designed objects could be imple-
mented with all concepts of OO. With an
RDBMS a mapping that includes the loss of con-
venient notions on the storage layer has to be
performed to make the object data persistent. An
additional problem is the missing inheritance of
structured and object-based8 programming lan-
guages that often have to be used within a
DBMS environment. Code reuse that could be
achieved with this technique cannot be imple-
mented [DeFu95], p.121. The very nature of
structured programming languages "robs the
object-oriented paradigm a lot of its power" [Panc95],
p.38. Nevertheless an object-oriented design can
be used to trace the multiple use of code that
was "cut and pasted" [Merk95].

Another problem is the application of oo analy-
sis and design methods in an environment
where relational systems were already used for
data storage. "It was difficult for the developers with
a strong relational database background to design
based on objects instead of database tables."
[BuAd95], p.73 If a developer has the RDBMS
target still in mind it will be hard for him to ana-
lyse and design according to oo concepts. A re-
sistance towards OT which is based on the
perception that it incorporates an additional
mapping effort can be the result.

5.3.3 RDBMS Solutions

Low level clues how to map the classes of an
object-oriented design to relational tables are
given in the literature (for instance [Rumb91]).
That a RDBMS can be used in many different
ways with objects and that the commonly known
mappings can be performed nearly automati-
cally is described in [Chun95]. The following in-
tegration concepts have to be considered during
design at least as possible design decisions:

Services-centric approach: To avoid the nec-
essary mapping in an environment that uses
the RDBMS as a storage for object data (ob-
ject repository) this approach exploits stored
procedures. During design, well-defined en-
try points for these services have to be
defined.

8 An object-based programming language supports data abstraction and classes while an object-oriented one
also provides inheritance and polymorphism.

- 11 -

Database broker layer: Arisen from the
needs to map objects in a large scale, this
idea promotes the construction of a broker
which automates the mapping of complex hi-
erarchical data in a flat relational system.
The construction of that layer during design
is considered to be very complicated. A simi-
lar functionality can be implemented in an
impedance mismatch resolver that works
with various relational systems. With this
concept the oo design is DBMS system
independent.

C++ class library framework: Details of the
persistence implementations are hidden
from clients that use the persistent classes
while transaction management and concur-
rency control has to be considered during
design.

SQL-3: With the latest version of the SQL
standard that is currently just available as a
draft the degree of semantic content of the
stored data should be increased. This is
achieved by features for defining new data
types and operations on these types. Beside
multiple inheritance and overloading, object
identity is described as a concept that has to
be implemented.

The concepts presented in [Klei95] are dealing
with oo software support for that mapping and a
distributed model that addresses these map-
pings in a larger environment. The described en-
terprise object framework supports the design
process through its clear distinction between
"user interface, business objects and the database
server". That business policies can be imple-
mented as methods instead of storing them as
form definitions or database procedures enables
the developer to use this policies and con-
structed objects can be "subclassed and re-used".
To solve the problem of "matching static, two-
dimensional data structures with the extensive flexi-
bility afforded by objects" the framework provides
a conceptual bridge trough a modelling tool that
supports the developer in mapping his design
model to an appropriate entity/relationship
model.

5.3.4 ODBMS

That the ODBMS application is probably the
most suitable solution can be seen in the sum-
mary of the presentation of the two IBM employ-
ees David Parkhill and Bill Friedmann
([Chun95], p.166). After the development of half
a dozen commercial applications with OT and an

RDBMS they state these systems are inadequate
to "meet the needs of enterprise object applications". I
support this thesis because only ODBMS offer
today a complete exploitation of object-oriented
concepts. With CORBA, designs for distributed
systems can be constructed in a real implementa-
tion independent way. This standard will soon be
supported by common ODBMS like ITASCA
and GEMSTONE that are also the only oo data
storage environments that store object data and
operations while other products still follow the
approach to put methods in applications.

6 Modern Concepts

Certain support elements for the design process
that are quite popular these days where not cov-
ered adequately in common oo methods. They
are important for the flexibility and agility
through the modelling of real world concepts
that are the aims of OT application. Besides their
advantages for the transition process they com-
prehend some dangers. The benefits and pitfalls
of possible solutions are summarised in this
section.

6.1 Reuse

"In the best case, the results of a domain analy-
sis may lead us to discover that we do not need
to develop any new software, but can reuse or
adapt existing frameworks." [Booc94],p.253

Today's designs should incorporate reuse to an
extend that is as large as possible. Reuse implies
a lower rate of errors but on the other hand it re-
quires special steps during the construction of a
design model. "Many people still associate OOD
with automatic reusability. We found that just be-
cause we used OOT, that did not make the code reus-
able" [Faya96]. No matter if logical models or
implemented components will be reused, a fa-
cilitator is necessary ([Vayd95]) to control the
process and to act as a final authority. He has to
be an expert in the application domain, because
he has to understand the multiple software pro-
jects within the domain ([Faya96]). The authors
of [Mala95] report that several divisions within
HP today are using OOA/D to successfully de-
velop domain specific frameworks for product
families. These frameworks consist of both con-
cepts and components and have to be well docu-
mented with OOA/D models. The "use of a
professional documentation writer to provide high
quality documentation" is recommended in
[Mala95]. Furthermore the authors propose the

- 12 -

application of colour-coding to show design
with-reuse. Legacy components and corporate as
well as commercial library components can be
highlighted in a design-with-reuse view.

I support the distinction between logical and
physical reuse that is combined in a framework.
The first one can be characterised by analysis
and design patterns while the second one can be
captured with the term components.

6.1.1 Patterns

Many of the problems that were solved by the
production of software can be attributed to the
same solution strategy ([HeSc93]). Therefore re-
use starts already during analysis to identify
known structures that can be mapped in a de-
fined way to design constructs. This "collection of
received wisdom based on past experience"
([Rumb96]) is currently developed and main-
tained by the "the pattern movement"9 and is an
important component of a software engineering
method. Currently design patterns that have to
be chosen by a skilful designer are the state of
the art10. Nevertheless design patterns can be ap-
plied to support the design process in various
ways. They are an eminent concept to cope with
complexity during conversation. With one term
classes, relationships between them and their be-
haviour, as well as the interaction in-between the
pattern, are referenced. In [Berg95] this is called
a "language of discourse between developers". Beside
the time saving aspect during normal design re-
views the learning curve is reduced when devel-
opers are moved to a different team to work on
another subsystem.

6.1.2 Components

[Vayd95] recommends to examine each design
class for reuse by either "aggregation or inheritance
from an existing set of in-house and externally pro-
duced classes". This describes the starting point
for reuse: the consideration of existing compo-
nents during the design process. At the begin-
ning this should be just external class libraries
for GUI, container, persistence and communica-
tion. The second step is the design of reusable
classes. They have to be truly general, widely re-
usable, documented and distributable

([Vayd95]). To achieve this, Vayda recommends
to establish the infrastructure for reuse very
early. The documentation of produced compo-
nents has to be maintained according to guide-
lines. Alan Nugent states in [Panc95], p.37:
"That's what enabled hardware reuse- not necessarily
the ability to make the components, but the ability to
document them well." He considers software ICs
not to be good because of the missing documen-
tation that is completely there for every hard-
ware IC: "exactly performance characteristics, the
physical requirements and every single operational
characteristic it had". Information about "object re-
liability, performance, or resource utilisation" is con-
sidered to be necessary. In [Faya96] the
importance of encapsulation is stressed because
"if too many internal details are visible, designers
will be less likely to use the part".

In [Appe96] requirements for externally or inter-
nally produced components are given. They
arose from an oo project and were originally
stated for modules but are also valid for the re-
use of classes. A developer has to know them
when he chooses a component for his design or
when he designs components that should be re-
used later.

The class must have an explicit interface, that
can be used without knowledge about its in-
ternals. This interface is the basis for a reuse
decision.

The interface is clearly defined in terms of
syntax and semantic.

The class is responsible for the realisation of
a well defined task that is easy to
understand.

Cohesion (internal relations/interactions)
must be high while coupling (external) must
be low.

If a change in requirements occurs, the
change of the class must be possible without
much overhead.

Furthermore a pragmatic procedure is described
that covers steps for a development with reuse
and for reuse. The main idea is the development
of a problem area model for the first application
that should lead to reusable components. This
model has to be developed through an OOA,

9 The book [Gamm94] contains a huge collection of patterns that were identified during oo projects. Online
information can be found at
http://st-www-cs-uiuc.edu/users/patterns/patterns.html

10 A formal method approach that uses Djikstras guarded command language during the mapping of an
analysis to design model is maybe a first step in the direction of an automated transition. But this is only
feasible if enough logical standard constructs on a high level are available.

- 13 -

OOD and OOP phase. Afterwards the analysis,
design and programming steps are performed
for a special model that is a subset of the prob-
lem area model. The development process for
another system in the same problem area can
then make use of the components of the first one.
These were designed using an oo typical bottom-
up procedure that supports a higher level of re-
usability than a procedural top-down approach.

6.2 CASE Support

The extensive usage of a CASE tool is controver-
sial. While the authors of [Faya96] state that even
if the tools are often expensive they are essential,
for the oo process in [Berg95] their use is only
recommended for capturing, checking and commu-
nicating the results of an analysis or design ses-
sion. The authors of the latter source report that
during their project the classical whiteboard was
the most useful because of the fundamentally so-
cial and creative character of the design process.
It was not possible to keep up with the flow of
ideas while capturing them in the CASE tool. As
a result the team was slowed down because of
tasks like opening windows or saving docu-
ments. Nevertheless the investment in a tool is
an important message of the management. It
demonstrates its commitment to the technology
and the project ([Faya96]). In [BuAd95] the pro-
ductivity increase with the use of the Objectory
CASE tool is mentioned. Despite the learning
time it was all in all more productive than a sim-
ple drawing tool.

Also method creators like Rumbaugh recom-
mend in their latest papers the usage of tools.
Important is "a single internal model that captures
all of the important design information" [Rumb96],
p.15. This provides a single repository that can
be shared between design applications. Through
a framework integration data can also be shared
between life-cycle tools to support management
aspects.

6.2.1 Problems

In [Mala95] the current state of tools is consid-
ered to be not sufficient. General problems like
non-intuitive usage and bugs are mentioned as
well as using model integration in the whole
spectrum from low to high end tools. The

authors of the paper demand the following fea-
tures: flexibility, integration, team support,
reverse engineering, reverse traceability and
support for reuse.

6.2.2 Tool Selection

An indicator for the selection of a wrong tool is
that it ends up as a drawing tool ([Berg95]). To
avoid this the right tool has to be identified be-
fore its purchase. [Vayd95] recommends a care-
ful evaluation, because repository features,
reverse engineering and code generation are
more important than the simple drawing sup-
port for a lot of notations. Other authors stress
the flexibility requirements ([Faya96]). They de-
mand an enforcement of OOT with tools that
catch the faults of developers who are used to a
structured or no programming technique during
the model construction. Reverse engineering and
automated code generation are low pay-off fea-
tures and hence should not be decisively for the
selection of the tool ([Faya96]). They are just
marginally useful. The consistent application of
the graphical rules, checking between diagrams
and a data dictionary are more important.

6.3 Prototyping

All commonly known types of prototypes have
an impact on the transition from analysis to de-
sign [WeSc95]. Exploratory prototypes are very
useful to support the development and evalua-
tion of usability features. Technical design deci-
sions can be made after the construction of
experimental prototypes that should especially be
used for critical aspects like the usage of a new
DBMS or communication subsystem. During a
RAD development process the evolutionary proto-
types support the incremental character of com-
mon oo methods. Instead of the both first
mentioned types they are not thrown away but
refined.

The influence of an implemented systempart on
the design is also described in [WeSc95]. The
authors suggest to use a spiral model11 for every
time box12 cycle during development. With this
approach each time box contains OOA, OOD
and OOP activity. As a result the implemented
parts can have an impact on the design in the
next iteration.

11 In contradiction to the waterfall model that requires the isolation of every phase in the development cycle
the spiral model promotes the iterative application of each phase in the commonly known sequence. It was
defined by Boehm in [Boeh88].

12 A way to control the Rapid Application Development (RAD) development process is the usage of time
boxing. For each time box a delivery date is defined that has to be kept.

- 14 -

6.3.1 Advantages

Despite the fact that it is a quite old article I
would like to refer to [Grah91] because of its
practise orientation. Graham describes a proto-
type as a specification that amplifies communica-
tion between designers, when evolutionary PT is
applied. A prototype shows how the world could
be on the basis of a analysis model that models
how it is. This supports the construction of vi-
sions that improve the modelled business sys-
tem. Graham talks about the "grave philosophical
error of assuming that the two groups [users and de-
velopers] share the same perception of the world and
what is relevant in it". The developer has to de-
sign the system's behaviour that is percepted by
the user in a different way than it appears to the
outer world. Prototyping is a bridge to simulate
the behaviour of the internal design concepts
and to verify them. Furthermore it improves re-
use because nowadays a prototype can often be
made up out of existing parts.

Finally prototyping increases job satisfaction
through its support for incremental develop-
ment. The team that works on the prototype is
not only a design but also an implementation
team that sees the results of their design work at
an early stage. The motivation to refine this ex-
ecutable systempart is higher than the motiva-
tion to work on "just" a design model.

6.3.2 Requirements

It is important to perform and document analy-
sis and design before any kind of PT is imple-
mented [WeSc95]. Hence the application of the
PT technique in an organisation has to be inte-
grated in a framework13 that describes its utilisa-
tion. Timeboxing and the spiral model are often
mentioned in the literature as a possible solu-
tion. When evolutionary prototyping is applied
reviews are very important, because designs that
are appropriate for the prototype may not be ap-
propriate for the full scale system [Grah91].

According to [Faya96] a prototyping expert is re-
quired amongst a development team to develop
a software product rapidly. This is valid even for
a semi-formal oo project. His activities must be
separated from those of the other developers be-
cause he has to "develop a software product rapidly
and correctly without necessarily following any spe-
cific techniques" ([Faya96],p.115). After he has
evaluated the efficiency of different designs he

communicates the design to software
developers.

6.4 Formal Methods

Despite the fact that they promise a better analy-
sis model and a reduced amount of errors dur-
ing the transition from analysis to design, formal
methods were not mentioned in any of the expe-
rience reports about OT that I evaluated. Various
object-oriented extensions for one of the most
common formal methods called Z are available,
but they were not used in any of the larger pro-
jects. A probable explanation is their need for ex-
perts and a longer and thus more expensive
development time. Nevertheless I would like to
summarise the theoretical paper [Eldr95] which
describes how the oo programming language
Eiffel facilitates the link between formal methods
and OT and how it supports the reduction of er-
rors during the step from analysis to design. Al-
though the paper is theoretical the mentioned
concepts contain a lot of ideas that are practical
relevant.

The author of Eiffel, Betrand Meyer, described
his involvement in the development of Z as an
important influence on Eiffel features that im-
prove quality, correctness of the software and a
more efficient development process. Because it is
a programming languages it can be easier
learned by a software engineer than a formal
specification language. Nevertheless it contains
assertions that increase reliability. These asser-
tions can be defined during analysis and design
with the expressive programming language. An
integration of business object description into
Eiffel specifications is described in [WaNe95].
Their notation is a possible way to reduce the
lack of clarity because of the code language, that
is a general major disadvantage of formal meth-
ods. The most important concept is the idea of
assertion guided program construction. A program
can be proved by a proof that is integrated in the
construction process. Assertions provide a de-
bugging support and they are the basis for ex-
ceptions. Furthermore reuse is supported
through a better description of components.

The problem of formal methods is their lack of
clarity for a user. Nevertheless they can be a way
to produce analysis models that are more com-
plete if they are integrated into other methods. A
possible way is the formal specification of meth-
ods in a common oo technique. With Eiffel an oo

13 Framework in this case means the definition and application of standard procedures as well as guidelines
to support the developers.

- 15 -

implementation language is provided that can be
used for specification during analysis and de-
sign. These can be implemented without a syn-
tactical change and hence are less erroneous.

7 Conclusion

The areas that were discussed in this papers are
quite wide. Nevertheless every developer should
to be aware of the various impact factors on the
transition from analysis to design, to avoid prob-
lems during the system development process.
Software engineering practitioners observed new
problems but also additional solutions during
their current practise. Even if the mentioned so-
lutions are not adaptable or not considered to be
good at least the problem descriptions should be
known.

The most important aspect is the necessity of
skilled employees. If the developers do not know
enough about the application of object technol-
ogy and if not at least one experienced person is
involved in a project, problems will not only oc-
cur during the design process. Nevertheless the
transition from analysis to design is one of the
anchor processes during the development. If its
importance or the high probability for errors
during its execution is underestimated, the com-
plete system construction will fail.

Finally, after all the important concepts about
the application of the object-oriented paradigm,
we have to consider that we are not able to reach
one of the most important provisions: The biases
that are there because of our formal education
have to be left behind in order to apply object
technology in the most efficient way. Ted Kahn
describes the prerequisites that should be there
as follows: "In fact, one of the kids wrote the pro-
gram for me that I used as the basis for my disserta-
tion research. He was 16 when he did that."
[Mest96], p.26

8 Bibliography

I decided to use the first four Letters of an
author with the year of publication as a reference
from the text to the bibliography. If a book has
two authors the first two letters of their names
are used. More than two authors lead to the us-
age of the first one as reference which is similar
to the et al notation.

[Appe96] Phasenübergreifende Wiederverwendung
durch den Einsatz von oo-Konzepten - W.

Appelfeller - OBJEKTspektrum 1/96 - SIGS
Conferences 1996

[Berg95] Lessons learned from the OS/400 OO Pro-
ject - W. Berg, M. Cline, M. Girou - Commu-
nications of the ACM, October 1995/Vol.38
No.10, pp.54-64

[Boeh88] A spiral model of software develop-
ment and enhancement - B. Boehm - IEEE
Computer, May 1988, S.61-72

[Booc94] Object-oriented Analysis and Design with
Applications - G. Booch - Benjamin Cummings
1994

[BoRu95] Unified Method for Object-Oriented De-
velopment - Documentation Set Version 0.8 -
G. Booch, J. Rumbaugh - Rational Software
Corporation 1995

[BrEv94] OO oversold - Those objects of obscure de-
sire - T. Bryant, A. Evans - Information and
Software Technology 1994 36(1), p.35-42

[BuAd95] Applying Object-Oriented Software Engi-
neering Methods to the Development of Call Cen-
ter Software: A Case Study - J. Burgett, S. Adam
- OOPS Messenger, pp.72-75 / OOPSLA '95 -
ACM 1995

[Caro94] Making Use: A Design Representation - J.
Caroll - Communications of the ACM, De-
cember 1994/Vol.37 No.12, pp.29-35

[Chun95] Objects and Relational Databases - J.
Chung, Y. Lin, D. Chang - OOPS Messenger,
pp.164-169 / OOPSLA '95 - ACM 1995

[CoYo91] Object-Oriented Analysis, 2nd edn. - P.
Coad, E. Yourdon - Prentice Hall 1991

[DeLu95] Using an object-oriented approach to the
development of a relational database application
system - P. Deng, C. Fuhr - Information &
Management 29 1995, pp.107-121

[Eldr95] Facilitating the Link between Software En-
gineering Practice and Formal Methods - G. Eld-
rige - Formal Reasoning in Software
Development, October 1995

[Embl92] Object-Oriented Systems Analysis: A
Model-Driven Approach - D. Embley, B.
Kurtz, S. Woodfield - Englewood Cliffs, NJ:
Yourdon Press 1992

[FaTs95] Object-Oriented Experiences - M. Fayad,
W. Tsai - Communications of the ACM, Octo-
ber 1995, pp.51-53

[Faya96] Transition to Object-Oriented Software De-
velopment - M. Fayad, W. Tsai, M. Fulghum -
Communications of the ACM, February
1996/Vol.39 No.2, pp.108-121

- 16 -

[FrAl95] A Use-Case Approach to Layering Object
Models - S. Frost, P. Allen - ROAD January-
February 1996 - SIGS Publications 1996

[Gamm94] Design Patterns - Elements of Reusable
Object-Oriented Software - R. Gamma, R.
Helm, R. Johnson, J. Vlissides - Addison
Wesley 1994

[Grah91] Structured prototyping for requirements
specification in expert systems and conventional
IT projects - I. Graham - Computing & Control
Engineering Journal, March 1991, pp.82-89

[Grah93] Object-Oriented Methods - I. Graham -
Addison Wesley 1993

[HeSc93] Wiederverwendung bei der Softwareerstel-
lung für betriebliche Informationssysteme - H.
Heß, A. Scheer Information Management,
Mai 1993

[HoSc96] Sanfter Übergang der zahlreichen Altsys-
teme in die neue objektorientierte Welt - F. Hoff-
mann, T. Scharf - Datenbank Focus 2/96,
pp.8-14 (Objekt Focus) - it Verlag 1996

[Jaco92] Object-Oriented Software Engineering - A
Use Case Driven Approach - I. Jacobson, M
Christerson, P. Jonsson, G. Övergaard - Addi-
son Wesley 1992

[Kaas95] Abstraction and concretizing in informa-
tion systems and problem domains: Implications
for system descriptions - J. Kaasbøll - Confer-
ence paper for Information System Concepts
1995, Marburg Germany

[Klei95] Enterprise Objects Framework - C. Kleiss-
ner - Proceedings of SIGMOD '95, pp.455-459

[Losa94] Object-oriented methodologies of Coad and
Yourdon and Booch: comparison of graphical no-
tations - Losavio, Matteo, Schlienger: Informa-
tion and Software Technology 36(8) 1994,
pp.503-514

[Mala95] Lessons from the Experiences of Leading-
Edge Object Technology Projects in Hewlett-
Packard - R. Malan, D. Coleman, R. Letsinger -
Proceedings of OOPSLA '95, pp.33-45, ACM
1995

[Merk95] Diplomarbeit: Entwurf einer Datenbank
zur Dokumentation und Planung der Klärschlam-
mentsorgungswirtschaft des Ertfverbandes - O.
Merkert 1995

[Merk96] Softwarewartung: Situationsanalyse und
Entwicklungsmöglichkeiten - O. Merkert,
Januar 1996

[Mest96] It's Child's Play - R. Mestel - New Scien-
tist, pp.24-27, 13. April 1996

[Meye88] Object-oriented Software Construction - B.
Meyer - Prentice Hall 1988

[Panc95] The Promise and the Cost of Object Tech-
nology: A Five-Year Forecast - C. Pancake -
Communications of the ACM, pp.33-49, Octo-
ber 1995

[PeCu95] Object-Oriented Analysis and Design: Re-
alism or Impression? - D. Pei, C. Cutone - Infor-
mation Systems Management Winter 1995,
pp.54-60

[Rumb91] Object-Oriented Modeling and Design - J.
Rumbaugh, M. Blaha, W. Premerlani, F.
Eddy, W. Lorensen - Prentice Hall 1991

[Rumb96] To form a more perfect union: Unifying
the OMT and Booch methods - J. Rumbaugh -
Journal of Object-Oriented Programming,
January 1996, pp.14-18

[Vayd95] Lessons From the Battlefield - T. Vayda -
Proceedings of OOPSLA '95, pp.439-452,
ACM 1995

[WaNe95] Seamless object-oriented software archi-
tectur: Analysis and Design of relyable systems -
K. Walden, J. Nerson - Prentice Hall 1995

[WeSc95] RAD-OO - Ein Vorgehenesmodell für ob-
jektorientierte Software-Entwicklung - W. Wei-
bel, P. Schorn - ObjectSpektrum 6/95,
pp.72-76

[Wino95] Environments for Design - T. Winograd -
Communications of the ACM, pp.65-74, June
1995

- 17 -

